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Abstract--The use of convolution integrals and of the method of images, applied to approximate basic 
solutions, is investigated. The value of these techniques in deriving approximate solutions of heat conduc- 
tion problems is discussed, and their accuracy, relative to both known exact solutions and other approximate 

ones, is assessed. 

1. INTRODUCTION 

ONE OF the standard techniques for obtaining 
solutions of many problems in the theory of heat 
conduction employs the superposition of known 
simpler solutions. This is principally done in 
one of two ways: either the solutions which are 
superimposed pertain to the same geometry 
but are applied at different times (in which case 
the process leads in general to a convolution or 
Duhamel integral [l, 2]), or the superposed 
solutions are applied simultaneously, at different 
spatial locations (in which case the procedure 
is referred to as the method of images [l, 21). 
Combinations of the two basic processes just 
described, as well as other techniques of super- 
position are at times employed; they all of course 
rest their validity on the fact that the heat 
conduction equation with temperature-inde- 
pendent properties is linear, so that sums of 
solutions are themselves solutions. These 
methods are known to be extremely powerful 
in the solution of such linear problems, and their 
use is correspondingly wide-spread. 

The practical value of superposition pro- 
cedures is high whenever the basic solution em- 
ployed is already known and is sufliciently 

*This work was supported by the Office of Naval Research, 
while the author was at Cornell University. 

simple, since clearly superposition tends to 
increase the level of complexity of the solution. 
The question which naturally arises is then, is 
it possible to simplify matters by employing 
approximate basic solutions in the super- 
position? Several techniques for the approximate 
solution of heat conduction problems are well 
known (for pertinent references and discussions 
see for example [l, 3, 4]), but to the author’s 
knowledge their use in conjunction with super- 
position has been neglected in the literature. 
The aim of the present paper is precisely a 
study of the feasibility, accuracy and convenience 
of the use of superposition of approximate basic 
solutions. Specifically, the following two ques- 
tions will be investigated here, the reader being 
referred to [S] for a discussion of other possible 
extensions of the present approach : 

(a) The use of approximate analytical methods 
of solution for problems with time-dependent 
applied heating can be obtained either by a 
convolution integral over a basic (approxi- 
mate) solution or by direct use of the chosen 
approximation technique. Which is easier to 
use, and which more accurate? 

(b) In approximate solutions obtained with 
the aid of the concept of “penetration depth” 
(i.e. a depth beyond which the surface heating 
is assumed to have no effect) a new form for 
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the solution must be adopted when the pene- 
tration depth becomes large enough to reach a 
new surface point, removed from the region of 
heat application (i.e. at the ‘transit time”). The 
pracedure is well known, and clearly requires 
a new and separate application of the chosen 
approximation technique after the transit time. 
The same objective can often be obtained by 
the techniques of imaging and reflection : again, 
which procedure is more convenient, and which 
more accurate? 

2.l'TME-DEPENDENT BOUNDARY CONDITIONS 

We will study here the use of Duhamel, or 
convolutions integrals on the basis of an approxi- 
mate solution. To that end, consider the half- 
space* x > 0, initially (t = 0) at the temperature 
T = 0, with a prescribed temperature at x = 0 
given by 

T(O, t) = ~~(~~~*~ (1) 

where T,, t, and n are constants. Let the approxi- 
mate temperature ‘P’)(x, t), corresponding to a 
particular value of n, be chosen in the form 

solution is well known (for example [3]) and 
gives 

q0 = J(A&): Aa = 147/13, IO, 12 13a) 

respectively for the Sot, Galerkin and heat- 
balance methods,? where K is the thermal 
diffisivity. For any n 2 0 we find that $ 

J(A,@; A, 147 20 12 4, = = - --_ 
13 + fSn”2 + 5n’l + 2n 

t 

T’“‘(u t) = FO’(x t - tl)- d fi” 
. 1 - > 

0 4 to 
dt1 

(W 

respectively for the Biot, Galerkin and heat- 
balance procedures. This completes the solution, 
as obtained by direct application of any of the 
above approximation methods. 

We now desire to solve the same problem 
with the aid the convolution or Duhamel’s 
theorem. The result is [tT 21: 

i 

= nTo 

0 

It is shown in [S] that this may be rewritten as 

(1 - x/q,)’ for x < q,(t) ‘-.. 
I .._. __I_~~“-__- ._. .- _-. 

$ The penetration depth is the solution of the equation 

(2) 
q$ + n42 = 6tct, in the case of the heat balance method, or 

0 for x 2 Qtf y2 = 2n + 1 
-+C ifn$-L: 1% 

9” L 

where f&,(t) is the penetration depth. If n = 0 the 

* Or a finite slab before the transit time, see Section 3. 
t These three techniques will be used throughout the 

paper; a description and comparisons among them may be 
found for example in [3], and in the references cited in [4]- 
In particular, note that the procedure referred to here as 
Galerkin’s is identical to that which often goes by the name 
of Kantorovich 16). 

42 = 12rctlogCt if n = -$. 

The constant of integration C is zero for 4(O) = 0 if n 3 0, 
but is indeterminate if n r: 0. Similar results are obtained 
with the other two methods of approximation, since Biot’s 
method gives the equation 

2&&t i- 15nqz = 14W 

and Galerkin’s method gives 

4qcjr -I- snqz = 20Kf 
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l-C2 

n 
s 

c?- ‘[l - &,‘(l - c# do for x < &I& 

0 

(5) 

0 for X > J(A,rcQ 

where 

For n = 0 this 

5 = &4&4. Pa) 
solution is of course identical 

with the preceding one, while for example for 
H = 1 and 2 it gives, for x < +‘(A,ict) 

T(‘) 3 = 1 - 4c + <2(3 - log l2); { < 1 
0 T, t 

7-G) 2 
t0 -- 0 = 

T, t 
1 - 7 + 452 $ f - 2<%g<2; 

t<1 (6) 
respectively. This completes the solution by 
means of the convolution integral. 

Finally, the exact solution to the above 
problem is [I, 2] : 

2+)(x, t) to 0 ” x 

--q----t 
= 22”1+ + l)P erfc - 

2&t) 
(7) 

for n a multiple of l/2, or [IS], for all n > 0: 

m 

We now wish to compare the direct approxi- 
mate solution, equation (2) with (3b), with the 
one given by the convolution integral, equation 
(5) or (6), and with the exact one, equations (7) 
or (8). 

Note first that all the above approximate 
solutions are of the penetration-depth form, and 
that in the convolution case q is independent of 
n, and is in fact equal to q. of the direct solution. 
In the latter, q,,, c qn for M > n, indicating that 

the higher the power the more restricted the 
region of si~i~~t temperature changes. 

Numerical comparisons of the various tem- 
perature distributions for n = 0, 1, 2 are given* 
in Fig. 1. They show that the convolution 
solution is more accurate than the direct one; 
whether its increased complexity is warranted 
in any one problem depends on the purpose for 
which is it needed and must therefore be left to 
the judgement of the user. 

A simpler comparison is obtained by examin- 

FIG. 1. Temperature distributions in a half-space with time- 
dependent surface temperature. 

*For simplicity, the comparisons in Figs. 1 and 2 are 
carried out only on the basis of the heat-balance method, 
although similar results are obtained with the other pro- 
cedures. 
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ing the surface heat-input corresponding to the 
three solutions. Reference [5] shows that the 

Thus the convolution procedure predicts the 

result is: 
actual variation with n, with a multiplying 
factor which does not differ greatly from unity. 
The direct solution is again simpler but less 
accurate. A plot corresponding to equations 
(9a, b, c) is given in Fig. 2. Clearly here also the 

- by direct solution (94 
convolution solution is more accurate than 
the direct one. 

nr(4 
T(n + L) by convolution (9b) 

2 

3. IMAGING AND REFLECTION OF 
APPROXNATE SOLUTIONS 

Consider now a slab of thickness L, initially 
at zero temperature, whose face x = 0 is 
suddenly raised to a constant temperature T, 
and whose face x = L is insulated. 

We will obtain first the solution by direct 
application of the three methods employed in 
the preceding work, namely the procedures of 
Biot, GaIerkin and of heat balance. Note first 
that the solution is 

Wn) exact 
r(n + f) 

The riot-hand side of equations (9b) and (SC) 
differ only by a constant factor, whose value, 
respectively for Biot’s, Gale&in’s, and the heat- 
balance methods, is: 

z 1.12; &c/3) w 1.023. (10) 
T(x, t) = T(*)(.u, t) if q. = J(A#) ,< L, 

C 
i.e. t 6 t, = - 

AOK 

(11) 

where T(O) is the half-space solution, equations 
(2), A, is given in equations (3a) for each of the 
three methods, and t, is the transit time. For 
t 2 t,, equations (2) are no longer valid, and 
must be replaced by new expressions, satisfying 
both the boundary conditions at x = 0 and 
x = I., and continuity of tern~rature distri- 
bution at t = t,. The simplest such expression is: 

Dwect solutlon, equotmn (90) 

T(x,t)= To[tl -p)(l -$+p]: 

Exact, equation ( 9c i p(t,) = 0; t 2 t,. (12) 
Convolution, equation ( 9b i 

The parameter p = p(t) is then found to be 

0 I 2 3 4 5 

p(t) = 1 - exp[-C(t - I>1 (13) 

where 

FIG. 2. Surface heat flux in a half-space with time-dependent 
surface temperature. 

c - z5 N 0.21)3.“.” 
119 - ‘4’4 UW 
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respectively for the Biot, Galerkin and heat- 
balance procedures. Note that the values of t, 
used in (13) differ according to the method used 
in obtaining C; hence comparisons among the 
three results are difficult on this basis. A more 
convenient form is obtained by writing the 
results in terms of the dimensionless time 

Kt 
z=-. 

C 

Noting that for the approximate methods 
p = T(L, t)/T,, we then have 

W, 0 
T”‘(x t) + t 

(-1)” -= ‘p , 

;G(o’(ZnL + x, t) -YO) (2nL - x, t)]. (17) 
If the exact expression for T(O) is used, (17) will 
give an alternative form for the exact solution, or 

(18) 

= T&r) 

T, 

1 - l-2436 e-2*47r z > 13/147 x 008844 (Biot) 

1 - 1~2840e-2’5’; r > l/10 = 0.1 (Galerkin) (15) 

1 - 1*2840e-3’; z > l/12 x O-0833 (Heat Balance) 

1 _ 1.2732 e- 2.4674~; first term of equation (16) 

The exact solution can be written in the form [2] : 

T(x,t)=1_4m 1 

namely the well known short-time form. Thus if 

c in+le 
- (Zn+l)*r2r/4 

approximate forms of T(O) are used in (17), 

T, 7c approximate expressions will result which are 

n=O particularly suited for short times; it is these 
s.m (2n + 1)nx 

(16) 
which we particularly wish to discuss. 

2L Let T(O) (x, t) be chosen in the form of 

in which the infinite series converges rapidly equations (2); then 
for large times; for example, the first term will Tf0)(2nLk x, t) 
give at least 4 correct decimal places in T(L, t)/T, 
for z > 0.4. It is thus evident that direct use of ’ 
the approximate procedures leads to a “long 
time” form for the solution, and in this particular = 

for 2nL f x < J(A,fct) 

problem the Galerkin procedure appears to 0 
be the most accurate. 

for 2nL & x 2 ,/(AOKt). 

An alternative form of the solution can be (19) 

derived by imaging the half-space solution, i.e. Care must be exercised to employ the correct 
that denoted in the preceding section by T(O) value of T(O), according to the two possibilities 
(x, t). The result is listed. If this is done, the final result is: 

T(L, t) 

Tl 

co for o < r s l/A0 

for f < z < f 
0 0 

for g < r < $ 
0 0 
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etc., or, in general 

~=~~I _&) 

+ [i - (-l)“] 1 - & 
C ) 

(21) 
0 

for on - II2 < z < (2n + II2 
A, ’ ’ A, 

n = 0,1,2,... 

7G 

~ 

c 

,-(Zni1)%~r/4 from equation (16) 

n=O (244 
=: 

* _ w> 0 
___ = 1 - p(t) from equation(l2). 

I, 
f24b) 

where, however, the lower limit of the range of 
validity is zero if n = 0. It is easy to show, for 

Figure 3 shows a comparison between the 

example, that lim T(L, t) + T, as t + 00 (by 
exact and approximate results; clearly the 

letting &A,) = 2n - I + d, 0 < d < 2, and 
solution obtained by imaging is more accurate 

taking the limit as y1-+ co). 
at short times, while the one obtained by direct 

For purposes of comparison with other 
use of the approximate procedure is more 

solutions, let the heat flux at x = 0 be calcu- 
accurate at long times. For simplicity, this 

lated. The method of images gives 
comparison is carried out only on the basis of 
the heat balance method. 

A 

4n2 
A<26 

4(n -I- 1)2 
(22) 

i 2- 

0 A0 

n = 0,1,2,... ! o- 

Again, this result is particularly accurate for 
short times, i.e. when the exact solution is 0.8 - 

approximated by a few terms of the series cor- %. 

responding to equation (1 S), or 
O- 

iz; 
a 06 -.-- 

L JT(O, t) --~ 
2T, Bx 

-ilkI 

I 04- 

co 

= &)[l + 2~(-l)“eVni”]. (23) 02- 

Jl=t 

I 5 I I I_ 
0 01 02 03 04 05 

ut 

L2 

FIG. 3. Surface heat flux in a slab of thickness L. 

For longer times, equation (22); although nu- 
merically still quite accurate, yields the curious 
result of a non-monotonic variation of aT(O,t)/k 
with time,* in contrast to the monotonic exact 
and approximate long-time results: these are, 
respectively, 
--~ ._~_ _- 

* In fact, clearly aT(O, Q/ax < 0 at all times, with the 
equality sign holding for ~4, = 16, 64, 144.. only. 
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- zdT(O, t) 
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SUR L’UTILISATION DE LA SUPERPOSITION DANS LA RESOLUTION APPROCHEE DE 
PROBLEMES DE CONDUCTION THERMIQUE 

R&r&Les inttgrales de convolution et la methode des images sont appliquees aux solutions approchtes 
fondementales. On discute la valeur de ces techniques en calculant des solutions approchees de problemes de 
conduction thermique et on Cvalue leur precision par rapport aux solutions exactes- connues et a d’autres 

approchees. 

DAS SUPERPOSITIONSPRINZIP BEI DER NAHERUNGSLGSUNG VON 
WARMELEITUNGSPROBLEMEN 

Zrmammenfassuug-E.s wirdder Gebrauch von Faltungsintegralen und die Anwendbarkeit der Abbildungs- 
methoden, zur niiherungsweisen Darstellung von Grundliisungen untersucht. Der Wert dieser Methoden 
zur Herleitung von N&herungsliisungen &r W&meleitprobleme wird diskutiert und die Genauigkeit, relativ, 
sowohl zu bekannten exakten Liisungen als such zu anderen Ngherungsliisungen wird abgeschltzt. 

IIPHMEHEHHE METOJJA CYIIEPIIO3HHHH IIPH PEIIIEHHB 3AAA=I 
TEIIJIOIIPOBO~HOCTB 

kIEOT~l@UI-klCCJle)Q'eTCJ3 BO8MOECHOCTb HCIlOJlbSOBaHKH PiHTel'paJlOB CBepTKEi ii MeTOga 
aao6pameHd anfl IIpH6i'ImKeHHblX peUIeHd &'K~aMeHTaJIhHblX YpaBHeHSiZt. 06cyxi~aeTcH 
QeHHOCTb STOl-0 MeTOAa n2TH lIOJIy=ieHMR npK6nmceHKnx peJ.UeHKP Saa=i TeIlJlOllpOBO~HOCTH 
EIIIpOBO~ITC~O~eHKa~XTOSHOCTEI~OCpaBHeHKH,CH8BeCTHblMUTOYHbIMIlEI~pH6~EIH(eHHbIMH 


